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Summary. We develop an approximate size consistent method within a 
framework of the multi-reference configuration interaction scheme. The 
Rayleigh-Schr6dinger perturbation theory is employed with a specific selec- 
tion of the unperturbed part of the electronic Hamiltonian. The second order 
energy is obtained by a set of equations similar to the quasidegenerate 
variational perturbation theory of Cave and Davidson. The approximate 
fourth order energy is obtained by solving a set of equations similar to the 
coupled electron pair approximation (CEPA). The method has been tested 
for two simple systems, Bell2 and N2, and the results are quite encouraging. 
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I. Introduction 

The configuration interaction (CI) method is a well-established method for 
obtaining wave functions of atoms and molecules including electron correlation 
[1]. The CI method employing only singly and doubly excited configuration state 
functions (CSFs) from several leading functions is widely used for drawing 
potential surfaces, describing wave functions of the excited states and so on. This 
procedure is called a multi-reference single and double excited configuration 
interaction (MRSDCI). A lot of trials have been made for improving the 
algorithm of the method [2]. By virtue of such efforts and the remarkable 
developments in high speed computers, quite large CI, say 10 6 dimensional CI, is 
now feasible; however, even with such large CI, chemical accuracy can be 
obtained only for small molecules. In considering larger molecules, inclusion of 
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the configurations of the higher order excitation becomes important and the size 
consistency problem [3] arises in limited CI. 

In order to overcome this difficulty at least partially, Peyerimhoff and 
Buenker incorporated Davidson's scheme of estimating quadruple correction [4] 
in the MRDCI method [5]. A few similar approaches have been put forward in 
MRSDCI [6]. Davidson further discussed a scheme based on second order 
Rayleigh-Schrrdinger perturbation theory [7a], variational perturbation theory 
(VPT) [7b] and quasidegenerate version (QDVPT) [7c]. Ahlrichs proposed a 
coupled pair functional method (CPF) and multi-reference averaged coupled pair 
functional (ACPF) [8]. 

We are going to develop a new approach to achieve size consistency 
approximately on the MRSDCI level. The method is based on the Rayleigh- 
Schrrdinger perturbation theory with a specific selection of the unperturbed part 
of the electronic Hamiltonian. We obtain a new set of equations similar to the 
coupled electron pair approximation (CEPA) [9] by making an approximation to 
the terms representing coupling between singly and doubly excited CSF's and 
triply and quadruply excited CSF's. Because of the resemblance of the equations 
to those of CEPA, we call this approach a multi-reference coupled pair approx- 
imation (MRCPA). The method is easily implemented in any of the MRSDCI 
program codes which have been extensively developed in recent years. 

In addition to the various methods of improvement at the CI level, there have 
also been studies of size consistent methods, such as many body perturbation 
theory and cluster expansion theory [3, 10]. The extension of some of these 
methods to multi-reference theory has been devised by a few groups [11], and 
several simplified schemes have been proposed and examined [12]. 

The method developed in this work will be described in the next section. Test 
calculations on Bell2 and Nz were performed and are compared with the results 
of-a few other methods in the Sect. 3. 

2. Method 

Suppose we have a complete orthonormal set of many electron functions. The set 
of functions is partitioned into three subsets P, Q and R as follows: 

P: reference functions {~a}, 
Q: singly and doubly excited CSFs {~,;}, 

R: rest of CSFs {~ks}. 

Hereafter, we use suffices a, b, c . . . .  to specify the P space elements, i, j, k , . . .  for 
the Q space ones, and s, t, u , . . .  the R space elements. As a matter of course, 
reference functions span a zero-th order space that gives a reasonable description 
of the exact total wave function. 

The exact total wave function, Ta, is expanded in the CI method as 

~'~ = E ~b~ + Z ~,f17 + Z ~7~. (1) 
b i s 
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If H is defined as total electronic Hamiltonian, the secular equation of  the CI is 
obtained by projecting 

(H - Ea)~" = 0 onto subspaces P, Q, and R. 

Here we propose a non-linear expansion of  the total wave function, ~ :  

~ =  b~ ~bb+Z, O~C~+ ~O~n~ e~,, (2) 
where 

and 

r7 = ~ C~ct~ (for all i in Q) (2a) 
b 

~a = ~ Dba~, (for all s in R). (2b) 
b 

As the matrix a is not singular, the coefficients {C~} and {D b } are uniquely 
defined. If  we project (H - Ea)~ a = 0 onto the space, P, Q, and R, we obtain the 
following Eqs. (3), (4), and (5), respectively: 

~ {Hco + ~'~HciCb -- Earcb } ~g i (3) 

~b {Hjb + ~i ItiiCb + ~ HisDb--EaC~} (4) 

~ {~fl HaCb w ~ Ht~D~ - EaD' } ot~, = (5) 

In this work, we consider a perturbation expansion of  the wave function ~a 
to determine {C~ } and {D~ }. If  the coefficients {C7 } are obtained, the total wave 
functions and eigenvalues are then given by solving (3), i.e., the eigenvalue 
problem of the effective Hamiltonian acting only on the reference space. Of  
course it is impossible to obtain the solution for the coefficients {D~ }. We will 
make an approximation for {Dr} and obtain a set of  equations to determine 
{C~' } where the effect of the correlation due to the space R is taken into account. 

Let ~ ,  ~, and ~ be the projection operators on the spaces P, Q, and R, 
respectively. The electronic Hamiltonian H is separated into the unperturbed 
part, H0, and the perturbing term, V, as 

H = H o + 2V, (6) 

where 2 is introduced as an ordering parameter of the perturbation. The 
parameter 2 is set to unity after the formulae are obtained. The unperturbed part 
of  the Hamiltonian is defined as follows: 

Ho = ~ H ~  + S H ~  + ~ H ~ .  (7) 

The perturbing term is then 

V = ~H.~ + ~ H ~  + S H ~  + ~H.~. (8) 
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Kutzelnigg [13] obtained formulae for perturbation expansions using essentially 
the same partitioning of the Hamiltonian for the case of single function in the P 
space. 

Let us assume that the reference functions, {~ba }, are eigenfunctions of ~ H ~ .  

H,,b = naar  ab . (9) 

By using (6) and (9), Eqs. (3), (4), and (5) may be rewritten as 

~b {(Obb--Ea)(~eb"~ ~ ~i OciCb}o~ ~0 , (10 )  

~b {~s OtsOb--EaObt "~-~ ~i HtiCbi }O~=O. ( 1 2 )  

Since CSFs {~O~ } in Q interact with the zero-th order wave functions (reference 
functions) and {ff~ } in R do not interact with the zero-th order wave function, 
the coefficients {C~' } start from the first order and {D~ } start from the second 
order. 

C a = ~ ~nca(n), ( 1 3 )  
n=l 

D a = ~ 2"D~ ("), (14) 
n = 2  

n = 2  

Ea = Haa + Z 2"AE(~ "), (16) 
n = 2  

where lab is Kronecker's delta. Collecting the second order terms in Eq. (10), we 
obtain the following equation: 

- AE~) 8~ + ~ Hc~C~. (1~ + (H~ - Ho~)o~7 (2) = O. 
i 

This leads to the following two equations: 

(17) 

AE~ 2) = y' H~,C] ('), (17a) 
i 

~(2) = (Hcc - Ha~)-1  ~, Hc, CT(~). (17b) 
i 

From the first, second and third order terms of Eq. (11), the equations, 

t-Ij~C'] (') - Ha, ,C]  (') +//j~ = 0, (18) 
i 

nji Ca(2) -- naa C ;  (2) = 0 ( 1 9 )  
i 
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and 

f~'~ H C b(1) H" ('~b(1) +Hjb}~ (2) 

- AE(~2)C] (') + ~ HjsD~ (2) = 0, (20) 
s 

may be derived, while the second and third order terms of Eq. (12) give rise to 
the following equations: 

E HtsD~(2) -HaaD~ (2) +~HtiC~ ~ =0, 
s i 

(21) 

~-~ - -  r ib (3)  HaaD~(3) 0. (22) l-ltsZI s - -  _~. 
s 

The coefficients C a(') may be obtained by solving Eq. (18). The coefficients 
C a{2) are all zero 

C~ {2) = 0, (23) 

because of Eq. (19); Ha~ is not the eigenvalue of .~H.~ but ~H~' .  The coefficients 
D a(a) can be obtained by solving Eq. (21); they are coefficients for the higher 
order excited CSF's {Os } which belong to the space R. The coefficients Ds a(3) are 

all zero as in the case of C~ {2). 

D ~(3) = 0. (24) 

With the help of Eqs. (17a), (17b), and (18) Eq. (20) may be rewritten as 

HaaC'(3) - E HjiCa(3) = E HjsDa(2) - ( ~  HaiCa(1) ) s 

- -  E E H b i c ~ ( l ) c f f ( l ) "  (25) 
b ~ a  i 

The first term of the right hand side represents the correlation term due to the 
higher excitations from the space P. This term is composed of, so to say, 
"connected" and "disconnected" contributions. The second term is the "discon- 
nected" one including an "exclusion principle violating (EPV)" type contribu- 
tion. The third term represents the indirect coupling between a reference function 
(~a and other reference functions through the correlation in the first order of the 
perturbation expansion. 

It is of course impossible to obtain the coefficients {D~ (2)} which are the 
solution of Eq. (21) 

Ds a(2) = E (Haa  I - -  ~ I )  - l s tHt iCa(1)  , (26a) 
it 

where 1 is unit matrix for the R space. Various types of approximations to these 
coefficients have been made for the case of a single reference function. The 
CP-MET (coupled pair many electron theory) [10a] neglects the connected 
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contributions, and pairs of disconnected double excitations are considered for the 
case of a single reference function. To be brief, D a(2) is written as 

D~ (2) ~- ~ C~~ ~ (i r k), (26b) 
ki 

where only four electron excitations are taken into account for D a(2) and 
combinations of pair excitations k and i fall into the four electron excited 
configuration s. Further approximations have been made in the treatment of the 
D~ (2) in CEPA's. In CEPA2, the following approximation has been made: 

Hj~D~ (2) -~ ~ HaIC~(1)C; (l) ( j  ~ k),  ( 2 ~ )  
s k 

Thus the approximate formula 

Z ]-/JsDsa(2)s - (~iHaica(l))C, (l)-l-l  ..a:'..: ..-: (26d) 

has been obtained. 
Unfortunately it is difficult to introduce the idea of electron pairs in the 

multi-reference case. Further the EPV terms and non EPV terms are not 
identified in this case. Here we assume that the "connected" contribution in the 
first term, ~,/-/jsDs a(2) c a n  be neglected. 

First we define e] by 

e]C](O = -(~s njsoa(2) - (~i  naiCaO))C~(l'}, (27) 

and further approximate e] as follows. Assume that •j is a doubly excited CSF 
relative to the reference space, which means, in this case, that ~kj is not singly 
excited relative to any reference CSF. A similar approximation to the CEPA2 is 
then carried out on Eq. (27): 

e] = H,r ~ (j:  double excitation). (28) 

If, on the other hand ~kj is a singly excited CSF relative to a reference function, 
~kj can interact only with triply excited CSFs in the space R, and those interacting 
CSFs are not single excitations relative to ~j but double excitations. We assume 
that ~,~/-/j~D~ (2) cancels with the contribution from the double excitation in the 
summation over i: (~ ;  H,~iC~.O))C] 0). Thus e] is given by 

e] = ~" HaiC7 .~ (j:  single excitation), (29) 
i 

where summation ~ runs over only singly excited CSFs. Then we obtain the 
following equation: 

HaaC;  (3) - E / ' / f i  C7(3) = - - e ] C ~  tl) --  ~ ~ HbiCa(l)Cb(1)" (30) 
i b ea  i 

By combining Eqs. (18) and (30), we obtain 
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a b a C~O)Hbi (C7(1) + C~'O)) 

= H j a  -4- ejCj (3) q- E Cb(1)HbiCa(3)" (31) 
bi 

The first term of the right hand side is first order in the magnitude of the 
perturbation whereas the second and third terms are the fifth order. If we neglect 
the fifth order term on the right hand side, the following equation results: 

" { (Haaq-e')rj i-Hjiq-  b~a2 Cb(l)Hbi}(C'(1)'q"C'(3))=[-IJa" (32) 

We obtain a set of equations similar to that of the CEPA2 [8] except for the 
last term in the left hand side which originated from the indirect coupling 
between ~ba and other reference functions. Let us approximate C~ by 

C_~ = C a(1) + C~ (2) + C a(3). (33) 

By the use of Eq. (23) and the solutions of Eq. (32), we obtain approximate 
coefficients {_C a }. The approximate solution for _Ea and _a is then obtained from 
an equation corresponding to Eq. (10), but in which ). is set to be unity, 

{ }. (Hbb - E-~)rcb + ~i Hci_Cbi a=0"  (34) 

The energy, _Ea, is the fourth order in the perturbation expansion. It is noted that 
the matrix of the effective Hamiltonian over the reference space is non-hermitian. 
The size consistency is obtained approximately due to the approximation on the 
right hand side of Eq. (25). 

If we truncate the perturbation expansion at the first order, i.e. replace _C~ by 
C~ (1), and obtain the wave function using Eq. (34), the approximate total wave 
function corresponds to that of a linear cluster expansion including rotation 
among reference functions due to the inclusion of electron correlation. The 
resultant energy is correct up to the second order of the perturbation. Very 
recently Cave and Davidson [7c] proposed a QDVPT which provides a similar 
wave function to the second order approximation of the present method. If we 
neglect rotation among reference functions in this order, the resulting wave 
function corresponds to the one given by the linearized coupled-cluster method 
(LCCM) by Laidig and Bartlett [12d]. 

The fourth order energy is obtained by a scheme similar to the CEPA which 
includes the effect of the quadruple correction approximately with a MRSDCI 
framework. The rotation within the reference space is taken into account through 
Eq. (34). The averaged coupled-pair functional method (ACPF) [Sb] is some- 
what similar to the present method. 

The process of the computation of the present method is as follows: 

1) solve Eq. (18) to calculate {ea}; 
2) solve Eq. (32) to evaluate {_C7}; 
3) solve Eq. (34) to obtain {_Ea} and {~,}. 
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The order of Eq. (34) is usually very small but that of Eqs. (18) and (32) is the 
same and is equal to the number of CSFs of single and double excitations. As a 
secular equation of almost the same order of Eq. (32) is solved only once in the 
usual MRSDCI, the present method requires roughly twice as much processing 
time as in usual MRSDCI of the eigenvalue problem. Other computational 
processes such as integral transformation and Hamiltonian matrix elements are 
the same as in the usual MRSDCI scheme. 

3. Results o f  test calculations and discussion 

In order to test the reliability of the present method, we carried out test 
calculations on two small molecules, Bell2 and N2. 

3.1. Bell2 

We carried out calculations at three geometrical points around the avoided 
crossing in the Cz~ insertion pathway of Be into Hz to yield Bell2 in the lowest 
1A 1 state [14]. We used the same basis set used by Purvis et al. [14], i.e., [3slp/2s] 
contracted from (lOs3p/4s). Firstly, a self consistent field (SCF) calculation was 
carried out using the electronic configuration la122a121b22 at the two geometry 
points other than the geometry point where the distance from Be to H 2 midpoint 
(r(BeH2)) was 3.00ao; at that geometry la 122al 23al 2 is used. Then we carried out 
a natural orbital (NO) iteration using CI with the singly excited configurations 
from the following two reference functions: lat22at21b22 and lat22a123ai 2. We 
expect this procedure to be a good approximation to an SCF procedure with the 
two configurations (TCSCF). Converged energies coincide with those given by 
Cave and Davidson [7b]. Using the molecular orbitals (MO's) thus obtained, we 
applied this method to the ground state surface using the two configurations as 
reference configurations. The number of CSFs was 182. 

Results of the second order approximation and the fourth order energy are 
shown in Table 1 and compared with energies of some other calculations. Two 
types of approximation are carried out on the fourth order energy : (i) the fourth 
order(l), in which we neglect the last term of the left hand side of Eq. (31), i.e., 
indirect coupling between the reference functions, and (ii) the fourth order(2), in 
which Eq. (31) is solved exactly. The fourth order energies are improved much 
in comparison with the 2nd order energies throughout the three geometries. The 
ratio of the coefficient of the lat22at23at 2 configuration to that of the 
la~22a121622 at the geometry, r(BeH2) = 2.75ao, r(H2) = 2.55a0, is -1 .02  in the 
2nd order approximation, -0 .97 in the fourth order(l) approximation, and 
-0 .90  in the fourth order(2) approximation. The last one is in good agreement 
with the full CI result of -0 .85  and comparable to -0 .89  of QDVPT [7c]. 

Results by ACPF agree best with the full CI results. Next best agreement is 
obtained by the present fourth order(2) and the MRCEPM of Meissner et al. 
[ 1 le] where the fourth order correction is taken into account. Comparable results 
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Table 1. The present results for the Bell 2 two-reference case and 
comparison with other results 

r(BeH2) a 2.50 2.75 3.00 
r(H2) a 2.78 2.55 2.32 
Full CI b - 15.6229 - 15.6029 - 15.6250 
A MRSDCI c 0.9 2.0 3.1 
A MRLCCM d - 2.6 - 2.4 - 5.5 
A M R C E P M  ~ - 0.1 0.6 2.9 
A ACPF r -0 .9  -0 .9  -0 .5  
AVPTg -3 .2  4.2 -5 .5  
A QDVPT h - 2.9 - 4.7 - 5.5 
Present 

second order i - 13.6 -6.1 -5 .6  
fourth order(1)J -2 .6  -4 .6  -4.1 
fourth order(2) k -- 1.2 -- 3.5 -- 4.5 

a r(BeH2 ) is the distance from Be to H 2 midpoint, r(H2) is the H 2 bond 
length in bohr 
b The full CI energies given in hartree [14b] 
c [7b]; relative to the full CI energies in millihartree 
d [12d]; relative to the full CI energies in miUihartree 

[lle]; relative to the full CI energies in miUihartree 
f [8b]; relative to the full CI energies in millihartree 
g [7b]; relative to the full CI energies in millihartree 
h [7C]; relative to the full CI energies in millihartree 
i C~ are replaced by the solution of Eq. (18). Energies are second order 
and relative to the full CI energies in millihartree 
J Cf are given by the solution of Eq. (31), neglecting the last term of the 
left hand side. Energies are relative to the full CI energies in millihartree 
k _C~ are given by the solution of Eq. (31). Energies are relative to the full 
CI energies in millihartree 

a re  g iven  by  Q D V P T .  As  is expec t ed  fo r  a m o l e c u l e  as smal l  as  Be l l2 ,  the  

M R S D C I  gives a ve ry  a c c u r a t e  ene rgy  in c o m p a r i s o n  w i t h  the  ful l  CI .  

As  was  p o i n t e d  o u t  p rev ious ly ,  the  p re sen t  s e c o n d  o r d e r  a p p r o x i m a t i o n  

w i t h o u t  r o t a t i o n  in the  re fe rence  space  is e q u i v a l e n t  to  M R L C C M  by  La id ig  et 

al. [ 12d]. T h e  energies  o f  the  s econd  o r d e r  w i t h o u t  r o t a t i o n  in the  re fe rence  space  

agree  w i t h  t hose  o f  M R L C C M .  T h e  energies  o f  M R L C C M  seem to  be  be t t e r  

t h a n  the  p r e sen t  s econd  o r d e r  energies .  Th i s  m a y  be  a t t r i b u t e d  to  c a n c e l a t i o n  

caused  by  neg l ec t i ng  r o t a t i o n  a m o n g  re fe rence  func t ions .  

3.2. N2 

T h e  basis  set u sed  in this  w o r k  was  the  [4s2p] D u n n i n g  c o n t r a c t i o n  [15] o f  the  

H u z i n a g a l  [ 16] (9s5p)  p r i m i t i v e  set. A set o f  d p o l a r i z a t i o n  f u n c t i o n s  was  a d d e d  

(3s  c o m p o n e n t  exc luded)  w i t h  e x p o n e n t s  o f  0.8. T h e  i n t e rnuc l ea r  d i s tances  

e m p l o y e d  were  2.05ao, 2.10ao, 2.15ao, a n d  50.0ao. T h e  e l ec t ron ic  w a v e  f u n c t i o n  
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and energies of the ground state (.e~lz~;) were calculated. First we carried out 
NO iteration with the 14 CSFs (20 by D2h point group) of the following type of 
configurations: 

lag21tru22trg22au2(3trg, 3o'u)z(Dzu, 17~g) 4, 

plus singly excited CSFs from these functions. We expect that the resulting NO 
set should be good approximation to the MCSCF orbital set for the 14 CSFs 
which are necessary to describe dissociation to the two nitrogen atoms in the 4S~ 
state properly. Using this NO set, we applied the present method to the ground 
state of N 2. At internuclear distances of 2.05a0, 2.10a0 and 2.15ao, we took the 
following four CSFs. 

lag 2 l truE 2tTg2 2au2 3ag 21/~u 4, 

10g 2 lCru22ffg22ffu23trg2[( 1 gu2) 3"rk-( 1//:g2) 3-r~-], 

l tr gE l truE 2ag2 2au2 3tTgZ[( l ~Zu2) ] Ag( l ~zg2) ' Ag], 

lag21a22ag22trE3ag2[(lr~2) ls,+ (lng2)~z~-], 

as reference functions to generate singly and doubly excited CSF's, the weight of 
the other CSFs being negligibly small. At the internuclear distance of 50.0a 0, the 
14 CSFs are taken as reference functions. The singly and doubly excited CSFs so 
generated are restricted to the first order interacting functions [ 17]. In order to 
compare the present results with the bench mark full CI by Bauschlicher and 
Langhoff [18], we utilized the same level of active orbital space and kept ltrg, 
la u, 2ag, and 2a, frozen. The number of CSF's was 1670 for the case of four 

Table 2. Total energies of the X12~ + state of N 2 

r ( N 2 )  a 2.05 2.10 2.15 50.0 

Full CI  b - 1 0 9 . 1 4 6 9  - 1 0 9 . 1 5 0 6  - 1 0 9 . 1 5 0 5  - 1 0 8 . 8 2 9 5  

M R - C I  c - -  0.8 - -  - -  

Present 
S D C I  2.2 2.3 2.6 0.5 

second order a - 1.4 - 2 . 6  - 2 . 6  - 0 . 1  

fourth order(1) e - 1.4 - 1.4 - 1.5 - 0 . 1  

fourth order(2) f - 1.4 0.01 - 0 . 3  - 0 . 1  

a r ( N 2 ) :  the  N 2 bond distance in bohr (ao)  
b The full CI energies given in [ 18] 
c The  internally contracted MRCI energies given in [ 19]. Energies are relative to the full C I  

energies in millihartree 
d _C~' are replaced by the solution of Eq.  (18).  Energies are relative to the full CI energies 
in millihartree 

_C~ are given by the solution of Eq.  (31) ,  neglecting the last term of the left hand side. 
Energies are relative to the full CI energies in millihartree 
f _C7 a re  g iven  by the solution of Eq.  (31).  Energies are relative to the full C I  energies in 
millihartree 
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Table 3. Some spectroscopic constants of the X~S + state of N z 

R e (%) D e (eV) (D e (cm -1) 

Full CI a 2.12 8.75 2333 
Present 

SDCI 2.12 8.69 2359 
second order b 2.12 8.82 2640 
fourth order c 2.12 8.78 2327 
fourth order d 2.13 8.74 1723 

aThe full CI energies given in [181 
b _C~ are replaced by the solution of Eq. (18) 
r C~ are given by the solution of Eq. (31), neglecting the last 
term of the left hand side 
d _C~ are given by the solution of Eq. (31) 

reference functions and 4188 for 14 reference functions. Ordinary SDCI with 
these CSF's was also carried out. 

Calculated energies and some spectroscopic constants are summarized in 
Table 2 and Table 3, respectively. The fourth order(2) approximation provides 
quite good agreement with the full CI energy except for r ( N 2 ) =  2.05a0, as is 
shown in Table 2. The fourth order( l )  energies are also in good agreement with 
the full CI energies and errors are almost constant for the three near equi- 
librium internuclear distances. The equilibrium distance, Re, by the four ap- 
proaches is in good agreement with the full CI results. Excellent agreement for 
De with full CI was obtained by both the fourth order approaches. For  ~e, the 
fourth order( l)  approximation gave very good agreement with the full CI 
value. SDCI also provided a good result. Unfortunately the fourth order(2) 
gave the worst result for cne. This was caused by the unstable error of energies 
against the three internuclear distances in the fourth order(2) approximation. 

In this subsection, we have considered the accuracy of the computed total 
energy, Re, De and co t of N2: o n  the whole the fourth order(2) approximation 
is superior to the fourth order(l) .  The difference between the two approaches 
is only in the approximation of the right hand side of Eq. (25). In order to 
obtain more stable results, further consideration of  this approximation may be 
interesting. 

4. Summary 

Using a non-linear expression for the wave function and Rayleigh-Schr6dinger 
perturbation theory, we have developed a method of incorporating quadruple 
correction within the framework of the MRSDCI.  Size consistency is approxi- 
mately obtained by this method. The reference space is treated as quasidegener- 
ate, and rotation in the reference space is taken into account. 
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This method has been used to calculate the total energies of Bell  2 and N2, 
and good agreement with full CI results is obtained. 
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